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Evolutionary Algorithms

* Primal search methods rely on two mechanisms to find the optimum of a
problem:

- Movement mechanism
- Evaluation

e A dumb method is Random Search - evaluation does not influence
movement

* Meta-heuristic methods develop smart strategies for searching in the
solution space

* |n Evolutionary Algorithms, Evaluation leads to Selection: defining the
starting points for the new move that will generate new candidates in the
solution space, by applying the principles of Natural Selection - discarding
the worst and keeping the best (fittest)
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Particle Swarm Methods & other

* |n Tabu Search, no selection is applied but the movement rule
includes provisions to avoid cycling and is influenced by the
evaluation values

* In PSO - Particle Swarm Optimization methods, no selection is
applied - but the movement rule has dynamic characteristics that
lead to progress towards the optimum.

* THESE ARE NOT EVOLUTIONARY METHODS!
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VMovement Rules in Evolutionary Algorithms

* The movement rule in EA is composed of two parts
- Mutation

- Recombination

* Mutation generates a new solution by (randomly) modifying a single
individual

* Recombination generates a new individual by (randomly) mixing the
characteristics of more than one previous solutions

* Neither of these mechanisms contribute to a push towards the
optimum!
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* |n Evolution Strategies/Evolutionary Programming, where variables are real
numbers, mutation is achieved by random deviations, usually subject to
Gaussian mutations controlled by a mutation rate ¢

Z = G(Nl(O,l),---,Nn (O’l))t

X:= X (1+2)

* Mutations may also be
multiplicative

X = Xe™NOD

e or under a log-normal law
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Evolution Strategies: the cSA (4,1) ES

* |n self-adapting Evolution Strategies, each descendent has a distinct

mutation strength

Xy X, X,

X
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Object parameters
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,\distingt
mutation
/strengths

* The selection process also selects the most favorable mutation

strength - embedded into the fittest descendent
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e RECOMBINATION: a new individual is formed from the
recombination of existing p parents.

Biology has p = 2

SCHEMES:

* Uniform crossover: for each variable, randomly select one of the p
parents to donate its value

* |ntermediary recombination: any variable receives a percentage
contribution from all the p parents - many schemes possible

* Point crossover: define crossover points, and then take parent
contributions in turns
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Particle Swarm Optimization (Classic PS0)

A set of particles (solutions) in the search space

movement of a particle:
X inew _ xi n Vinew
inetia: Memory
moving in the same direction
memory:

attraction by particle past best
cooperation: attraction for global best
basic model

Inertia

Cooperation

(VAL E V; +Rnd1,wi(1) (bi —Xi)+ RndZ.Wi(z) (bg—Xi)
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Particle Swarm Optimization (Classic PS0)

* Here is an attempt to have evolving weights

1 2
VW~ Dec(t).wigV; +Rnd;.w ' (b; — X; )+ Rnd ,.w! )(bg —Xi)

e Another model is the constriction factor of M. Clerc

Vig " = Kk[vik +RnchWmy (bix — Xik) + RndaWe (bgk — Xik)]

Kk = 2

Wk =ka+WCk Wk >4

‘Z—Wk —\/Wf—4wk‘

* Evolving weights - the need to adapt the progress of the
algorithm to the different search phases and the different global
and local landscapes of problems
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Re-interpretation of the movement rule

What is the PSO movement rule, really?

- It is a form of intermediary recombination!

The following parents are used to produce a new individual:
- A particle
- Its direct ancestor
- Its best ancestor (kept in suspended animation)

- The best ancestor found by the swarm (also kept in suspended
animation, for reproduction purposes)

* The sharing proportion is defined by the weights:

XMW = (L4+ W, — Wy — W)X +w X0+ wyb; +Wchyg

* This rule is biased towards the optimum, it is not neutral!
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A self-adaptive EA with particle swarm moyves: EPSO

RECOMBINATION via THE MOVEMENT RULE
* movement of a particle:

K Kk Kk

X=X AT A
* jnertia: Memory
moving in the same direction

* memory: Inertia

attraction by particle past best

* cooperation:

attraction for global best Cooperation

Kk Kk Kk K K,mem Kk Kk best* Kk
*Vi = WiinertiaVi + Wi mem(X —Xi) + Wicoop(Xi ~ —Xi)
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EPSO as a self-adaptive recombination process

» Each weight (strategic parameter) suffers mutation

e ...an Evolutionary Process !l
* PLUS - the global best has a “foggy” definition

xPeSt” = xPest (1 4 ' N[0,1])

Exploration strength best
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EPSO as a self-adaptive Evolution Strategy

The particles “do not move”: they reproduce

REPLICATION - each particle is replicated r times (cloning)
MUTATION - each clone has its weights w mutated

RECOMBINATION - each mutated particle generates 1 offspring according
to the particle movement rule

EVALUATION - each offspring has its fitness evaluated

SELECTION - by stochastic tournament (or elitism) the best particle in each
group of r survives to form a new generation

(the best particles carry with them, to the following generation, their mutated weights)
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Self-adaptation of the recombination operator

* Previous self-adaptive Evolutionary Algorithms have been designed
to make the mutation operator evolve - a mutation rate is subject to
selection and stays attached to a solution and its descendents.

* |n EPSQ, it is the recombination operator that is made to evolve, in a
special form of intermediary recombination (the movement rule), by
self-adapting the proportions of contributions of parents in forming
an offspring

* The weights are strategic parameters and like object parameters
are subject to selection and are passed to the descendents
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EPSO in action

» Selection acts separately on ® ®
the descendents of each ® ®
particle ® ® o
@ ® °

®
* |t is a parallel process where

O
- - .
the lnteraCtlon among Se'ection in each
particles is assured by the particle
recombination rule descendents
@)

O
* Recombination proportion is ® ®
evolving under selection ° e
pressure © O
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Evolving weights

Weights evolve and adapt

Evolution of weights of
successive
global best

10

)

— inertia
memory
0.01 — — cooperation

0.001
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* The following slides are showing one real life example where EPSO
competed against other algorithms and proves to be a winner
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Competition against other algorithms

* An intelligent agent platform simulating a multi-energy retail market

* A retailer agent with the capacity to perform internal simulations to
optimize its market strategy

* |f we equip distinct retailers with different algorithms, and then run
for some time a complex market simulation, will there be a winner?

e Atest for 24 month simulation, allowing an internal 2 month ahead
simulation
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A model for the retail market

19 agents

Heat regulator

Economy Gas regulator

/ Elect. regulator

Infiermation Heat delivery
Environment -I_

Commerc. cons.

\Besidenc. cons.

Gas delivery

Industrial cons.

I
\-L Market Op.

Elect. delivery

Retailer
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Parallel processing with JADE platform

JADE
FIPA compliant

5 PCs - LAN
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A simulation within the simulation

* Each retailer agent optimizes its strategy by simulating market
evolution before making a move (such as changing prices, deciding
investment, etc.)

* This simulation aims at optimizing a vital function of the agent -
could be maximizing profit, or keeping market share, for instance.
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Competing algorithms

e Basic EPSO
e Basic PSO

o SSGA (steady state): a Genetic Algorithm with elitism (the best 20%
always surviving)

* MPGA (multiple population): a Genetic Algorithm with two
populations exchanging 2 individuals per generation

* DCGA (deterministic crowding): a Genetic Algorithm with a special
rule for selection
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* Fixed population for all algorithms - 20 individuals

* Same fitness (maximizing profit for the retailer)

* Same stopping criterion: no improvement in the fitness function in
10 consecutive generations
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» after we have seen an real life example - there is another thing in
EPSO that differs from other PSOs
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Communication structures among particles

e (Classical communication structure: the star, where all

individuals share at the same time the knowledge 2 Tt %
about the location of the new global best N [ /

* Too much communication is against exploration of the 3 — ¥ — X
search space - may induce premature convergence ;}/ 1 N 2

3¢

o Alternative structure: the ring, where each particle
only commuunicates with two neighbours -
information about a new global best takes time until it
reaches all individuals a:z»‘/ Lo AN *

* Too little communication risks approaching the / \
process to a set of parallel independent individual “)3“’\ Xt
searches 3 i}/

\“I:f’/
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Stochastic communication

o EPSO: stochastic star

There is a communication probability threshold p below which
communication is allowed and above which information about
the global best does not pass to an individual.

* Probability threshold p is applied to each dimension of an individual
- it may receive information in some dimensions and have it
blocked in other!

. , o3
» Experiments led to adopting a value of %}\ 33%
*p=0,2 3t ** 3t
(as a “rule of thumb”) 5 «x:s o
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Rosenbrock function and stochastic star

* Rosenbrock function

e 20 runs, 50.000 fitness function
evaluations

* average error and standard
deviation of 20 runs is shown

* p=1isn’t shown on the graph, it
leads the algorithm into

premature convergence
* note: Y-axis scale is logarithmic
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CEC 2005 2 Schwefel's problem

* function from battery of tests for
non-constrained real-valued
optimization according to CEC2005

conference
» stopping criteria is a fixed number 1.00E+00 ‘ ‘ ‘ ‘
of fitness function evaluations 1.00E-02 ) 02 04 06 08 !
1.00E-04 \ d
—sl.aev
* very low values of p lead to bad 1.00E-06 \ ——avg
results, as well as very high 1 00E-08 - \ /
1.00E-10 /
* relatively insensitive to changing p 1.00E-12 - \ B
in central area L 00E-14 =

e curve of standard deviation of
solutions between runs follows
shape of achieved error values
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CEC 2005 19 Rastrigin’s function

e for this function lower values of

communication probability are
significantly better

1.00E+02

1.00E+01 —

—
* even though this function reacts //_—

differently, standard deviation

error values

. . 1.00E+00 \ \ T T
again follows shape of achieved 0 %_2 04 06 08
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Sphere function

* simple problem, so with higher
number of fitness function
evaluation algorithm always

converges
1.00E+00
1.00e-01 & 0.2 st.dev|-2:6 0.8 1
* number of fitness function 1.00E-02 . ——avg y
evalutions is low 1.00E-03 /
1.00E-04 -
- 5000, 30 dimensions L 00E.05 /
1.00E-06 - \/\/
1.00E-07 -
* once again - the standard oo N—7'\

deviation follows the behavior of
error values
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Another from real life: Reactive Power Planning

* a difficult nonlinear, multiobjective problem from power systems

* minimize total investment costs - while keeping network conditions
appropriate

- utilizing penalties to reflect planner’s decisions
- weighted sum of investment and penalties

* discrete and continuous control variables
- not all operating limits are self-constrained in variables
- need to utilize power flow calculations in a “heavyweight” fitness function

* |arge search spaces and demanding calculations
- sizes of typical electric networks indicate number of search variables
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Reactive Power Planning

* our implementation of EPSO takes advantage of power flow
calculation library

* a multitude of input variables need to be included in planning
process

* the application can handle various network load levels within single
optimization process

- during the night the operating conditions are different!!

* as a planning algorithm, EPSO has proven to be successful and
robust

- how does the stochastic star probability influence its performance on
this problem?
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EPSO and Reactive Power Planning (2)

e 30 node network
e total cost of best

6.94E+05

solution shown, after " ?
?OO a.nd 1000 0928205 =—&— 200 iterations / \ /
iterations 6 OEA05

= 1000 iterations

6.88E+05

* this problem (and this

setup of input variables!) 6.86E+05 |
relatively insensitive to 6 B1Es05
changing the p ™

6.82E+05 }[ / \/

» appropriate p and fast 0805057

convergence especially 6.78E405 | | | |
interesting for using EPSO 0 0.2 0.4 06 08 1
in close-to-real t|me communication probability p
applications
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EPSO and Clustering Problem

e another problem from
mathematical world - but
clustering problems are also 8
common in applications )

(o2}

* jn power systems - grouping
customers based on their
demand curves into customer
groups

e as an illustration: finding central =~ !
points of three clusters shaped
like squares

- convergence process illustrated
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EPSO In Clustering Problem

12

114 - Fitness/20 % Root mean square deviation to
10 - minimum/20

112 - L
8 |
110 -
6
108 - 4
106 - 2 |
104 T T T T O T T T T
0 0.2 04 06 0.8 1 0 0.2 04 0.6 0.8 1

* similar to previous stochastic star tests, 20 runs of EPSO algorithm, average
and deviation

* once again - best fitnesses and standard deviation behave similarly

* optimal value of p low - for this problem weak communication is better
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Finally...

* as itis already proven - it is important not to have strict, fixed
communication topology

» stochastic star topology of communication improved EPSO
performance, both in test problems and real life problems

- itis also simple for implementation!

* however: optimal value of “p” isn’t unique, depends on the problem!

* this indicates we should step towards (truly) adaptive
communication topologies

- this is a promising direction of research; how to sample search space, what
does the distance between particles mean...
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