W Parallel Cooperative

Optimization Research
Group

Particle Swarm Optimization with ParadisEO

http://paradiseo.gforge.inria.fr P
aradiseo

'f'.";alr"'.?
- L I R 1 Iy

eyt R A0
i ! R B o p o
i % i |.IJI 1"-" Llli "‘\-.';: |:I g I."l" :.I:

4 ParadisgEO (1)

" A templates-based, ANSI-C++ compliant
Metaheuristic Computation Framework

" GForge Project by INRIA Dolphin Team

* Paradigm Free (genetic algorithms, genetic
programming, particle swarm optimization,
local searches ...)

* Hybrid, distributed and cooperative models

http://paradiseo.gforge.inria. H‘ ‘ ‘

fr OFOCJISGO

ParadisgO (2)

" Flexible / a considered problem

* Generic components (variation operators,
selection, replacement, termination, particle
behaviors ...)

“ Many services (visualization, managing
command-line parameters, saving/restarting,

)

l R\rod:seo

ParadisEO : Module-based architecture

Parallel and distributed
metaheuristics¢

Tabu Search, FaradisEﬂ- PEO

Simula’Fed | I I Multi-objective
Annealing, Hill= J{:IHFMEEE* ParadisEQ — metaheuristics :

Qlimbing: . -MOEO NSGAII..., metrics...
single solution t

based
metaheuristics

F’aradlsED EO

|

Evolutionary computation,
Swarm intelligence :
population-based

|

The main steps to build a particle
swarm optimization algorithm

1. Design a representation

Decide how to initialize a population
(=swarm)

Design a way of evaluating an individual
Design suitable velocity operator
Decide the flight operator

Decide how to manage the population
Decide the “best updating” strategy
Decide the continuation criterion

N

3.
4.
5.
6.
7.
8.

4 Framework and tutorial application

" Framework dedicated to metaheuristics

g

A L : .
N [%rqdiseo Parallel and Distributed Evolving Objects

" Tutorial application
— Norm optimization problem
(Euclidean norm minimization)

PGS
ara d ISCO

J

Application to the Norm

Optimization Problem (NOP)

" f:R">R x="2

N , L7
f(x1,x2,...,Xn):\/Z X i

" Example : Y

f(Xl,)CZ) :\/.XIZ +x22

, X, €ER

Minimization of the Euclidean norm

4 Designing a representation

" Representing an individual as a
position
" Maybe several ways to do this. The

representation must be relevant
regards the tackled problem

" When choosing a representation, we
have to bear in mind how the
positions will be evaluated and how
the flight operators will be used

OFOCJISGO

4 Real-valued representation

" Individuals are represented as a tuple of n
real-valued numbers

Xs

X = , X, ER

xi’l

" The fitness function maps tuples of real
numbers to a single real number

PGS
ara d ISCO

representations in ParadisgO

4 Existent basic particle

EQO extension,
base type for |

a particle

String-based
g representation!
‘ } Real strings

‘ R\rodlseo

Application to the NOP

-

" Particle encoding:
" Each component of the position is a real
" Each component of the best position is a real
" Each component of the velocity is a real

Initialization of the swarm

" Initialize
" Positions Standard
" Velocities
" Best positions of each particle
" The global best

" Standard strategies
" Position + Velocities: Random

“ Initial global best = initial best particle

e o
L 4
WD

' Existent swarm initializers in
ﬁ'ﬁ'ﬁ ‘
- =™

Position initializers | |
i T~

Velocity initializers

4 Application to the NOP

" Generate the initial positions and velocities at
random between bounds

Existent swarm initializers in ParadisgO

eolUF

_: eoPop<E0T= &, vnid::

------- | R e e e A e e]|
, €0Pop<EQT>, eoPop<E0T>:

eoBF

7

—

f
==

] L"‘

/ - _/

~

~

Particle best initializers Global best initializers

Application to the NOP

'euF’up-:EDT:- &, vold: '

eo UF

7

" The first position is the initial best

" The initial global best is the initial best of the swarm

4 The evaluation of an individual

" This is by far the most costly step for
real applications

" It might be a subroutine, a black-box
simulator, or any external process
(e.g. robot experiment)

" Fitness could be approximated

e o
L 4
WD

4 Designing a velocity

" The velocity gives the direction

" Learning factors and memory
" Follow the global best ?
" Follow the particle’s best ?

" Global version faster
" May converge to local optimums

" Local version slower

" Not easy to be trapped into local
optimums

- 3

P ¢

8 R
l G

4 Existent velocities in ParadiskEO

N— -
—

T
]

Inertia weight based
velocities

WE W
G

e of
Mg

[2radi

Application to the NOP

" Inertia weight factor which decreases with the number of
generations

Vi=K*[Vi+ cl x (Pi best-Pi) + c2 x (Pgbest - Pi)]

Flight operator

The flight consists in adding the velocity to the current
position (standard)

ParadisEO provides this standard approach but is
opened

4 Desighing a “best updating” strategy

" The global/local directions depends on the
updating strategy

" Standard approach: update the best position
of a particle if the new fithess value is better

" Constraint handling - what if the solution
breaks some constraint of the problem

" penalize the fithess
" specific methods

Multi-objective optimization gives a set of
compromise solutions

W o
Ty ¢
l 4

Existent updating strategies in ParadisEO

— _/ — _/ — _/
VT g YT

Standard particle’s Update the fitness if Standard global
best update it's €-better best update

Application to the NOP

Standard particle’s Update the fitness if Standard global
best update it's €-better best update

4 The continuation strategy

" The optimum is reached !
" Limit on CPU resources: Maximum number
of fithess evaluations

" A given number of generations without

Improvement: for the swarm or for the

global best

e o
A i
NG

Core classes

Fixed number A given number of

of gen. gen. without
-/ improvement
A threshold
fithess is
reached A duration
IS reached
A number
of eval.
has been
performed Combination of

continuators

Particle Swarm Algorithm

eoParticleA rch ive E

4 lllustration. Core classes of the

A T

.éaf."-q'n ﬁr;l.l-e_
TP

. D eo VEIEEFE—

Implementation

* eoPop < Indi > pop; /* population */
* eoEvalFuncPtr<Indi, double, const Indi& > eval(real_value); /* evaluator */

* eoUniformGenerator < double >uGen (-1.0, 1.0);

* eolnitFixedLength < Indi > random (VEC_SIZE, uGen);

* eoVelocitylnitFixedLength < Indi > speedRandom (VEC_SIZE, uGen);
* eoFirstisBestlnit < Indi > locallnit;

* eoSingleParticleArchive < Indi > archive;

* eoBestOfAllInit < Indi > globallnit (archive); /*initializers */

* eoVariablelnertiaWeightedVelocity < Indi > velocity (archive, generationCounter,MAX_ GEN,
Cl, C2);

* eoStandardFlight < Indi > flight; /* main operators */

* eoUpdatelfBetter < Indi > updater;
* eoUpdateGloballfBetter < Indi > globalUpdater (archive); /* updaters */

* eoGenContinue < Indi > genCont (MAX_GEN);

* eoEasyPSO < Indi > psa (genCont , eval, velocity, flight, updater, globalUpdater);
/* PSO */

* psa (pop); /*runit*

| Rvodis’eo

Execution and visualization

" Advanced runtime control
" Termination condition on the swarm

" Termination condition on the global best

" Advanced statistics and utilities

4 Download, test and enjoy

" http://paradiseo.gforge.inria.fr

" Free download of paradiseo-ix86-1.0-
alpha

" Future work (beta and major releases)
" Parallel and distributed PSO

" Advanced features

N ('IE "':—7:'7‘
QrQoisco

http://paradiseo.gforge.inria.fr/

