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4 ParadisgEO (1)

" A templates-based, ANSI-C++ compliant
Metaheuristic Computation Framework

" GForge Project by INRIA Dolphin Team

* Paradigm Free (genetic algorithms, genetic
programming, particle swarm optimization,
local searches ...)

* Hybrid, distributed and cooperative models
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ParadisgO (2)

" Flexible / a considered problem

* Generic components (variation operators,
selection, replacement, termination, particle
behaviors ...)

“ Many services (visualization, managing
command-line parameters, saving/restarting,

)
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ParadisEO : Module-based architecture

Parallel and distributed
metaheuristics¢

Tabu Search, FaradisEﬂ- PEO

Simula’Fed | I I Multi-objective
Annealing, Hill= J{:IHFMEEE* ParadisEQ — metaheuristics :

Qlimbing: . -MOEO NSGAII..., metrics...
single solution t

based
metaheuristics

F’aradlsED EO

|

Evolutionary computation,
Swarm intelligence :
population-based
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The main steps to build a particle
swarm optimization algorithm

1. Design a representation

Decide how to initialize a population
(=swarm)

Design a way of evaluating an individual
Design suitable velocity operator
Decide the flight operator

Decide how to manage the population
Decide the “best updating” strategy
Decide the continuation criterion
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4 Framework and tutorial application

" Framework dedicated to metaheuristics
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" Tutorial application
— Norm optimization problem
(Euclidean norm minimization)
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Application to the Norm

Optimization Problem (NOP)

" f:R">R x="2

N , L7
f(x1,x2,...,Xn):\/Z X i

" Example : Y

f(Xl, )CZ) :\/.XIZ +x22

, X, €ER

Minimization of the Euclidean norm




4 Designing a representation

" Representing an individual as a
position
" Maybe several ways to do this. The

representation must be relevant
regards the tackled problem

" When choosing a representation, we
have to bear in mind how the
positions will be evaluated and how
the flight operators will be used
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4 Real-valued representation

" Individuals are represented as a tuple of n
real-valued numbers

Xs

X = , X, ER

xi’l

" The fitness function maps tuples of real
numbers to a single real number
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representations in ParadisgO

4 Existent basic particle

EQO extension,
base type for |

a particle

String-based
g representation!
‘ } Real strings
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Application to the NOP

-

" Particle encoding:
" Each component of the position is a real
" Each component of the best position is a real
" Each component of the velocity is a real




Initialization of the swarm

" Initialize
" Positions Standard
" Velocities
" Best positions of each particle
" The global best

" Standard strategies
" Position + Velocities: Random

“ Initial global best = initial best particle
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' Existent swarm initializers in
ﬁ'ﬁ'ﬁ ‘
- =™

Position initializers | |
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Velocity initializers




4 Application to the NOP

" Generate the initial positions and velocities at
random between bounds




Existent swarm initializers in ParadisgO
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Particle best initializers Global best initializers




Application to the NOP
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" The first position is the initial best

" The initial global best is the initial best of the swarm




4 The evaluation of an individual

" This is by far the most costly step for
real applications

" It might be a subroutine, a black-box
simulator, or any external process
(e.g. robot experiment)

" Fitness could be approximated
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4 Designing a velocity

" The velocity gives the direction

" Learning factors and memory
" Follow the global best ?
" Follow the particle’s best ?

" Global version faster
" May converge to local optimums

" Local version slower

" Not easy to be trapped into local
optimums
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4 Existent velocities in ParadiskEO
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Inertia weight based
velocities
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Application to the NOP

" Inertia weight factor which decreases with the number of
generations

Vi=K*[ Vi+ cl x (Pi best-Pi) + c2 x (Pgbest - Pi ) ]




Flight operator

The flight consists in adding the velocity to the current
position (standard)

ParadisEO provides this standard approach but is
opened




4 Desighing a “best updating” strategy

" The global/local directions depends on the
updating strategy

" Standard approach: update the best position
of a particle if the new fithess value is better

" Constraint handling - what if the solution
breaks some constraint of the problem

" penalize the fithess
" specific methods

Multi-objective optimization gives a set of
compromise solutions

W o
Ty ¢
l 4




Existent updating strategies in ParadisEO
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Standard particle’s Update the fitness if  Standard global
best update it's €-better best update




Application to the NOP

Standard particle’s Update the fitness if  Standard global
best update it's €-better best update




4 The continuation strategy

" The optimum is reached !
" Limit on CPU resources: Maximum number
of fithess evaluations

" A given number of generations without

Improvement: for the swarm or for the

global best
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Core classes

Fixed number A given number of

of gen. gen. without
-/ improvement
A threshold
fithess is
reached A duration
IS reached
A number
of eval.
has been
performed Combination of

continuators




Particle Swarm Algorithm
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Implementation

* eoPop < Indi > pop; /* population */
* eoEvalFuncPtr<Indi, double, const Indi& > eval( real_value ); /* evaluator */

* eoUniformGenerator < double >uGen (-1.0, 1.0);

* eolnitFixedLength < Indi > random (VEC_SIZE, uGen);

* eoVelocitylnitFixedLength < Indi > speedRandom (VEC_SIZE, uGen);
* eoFirstisBestlnit < Indi > locallnit;

* eoSingleParticleArchive < Indi > archive;

* eoBestOfAllInit < Indi > globallnit (archive);  /*initializers */

* eoVariablelnertiaWeightedVelocity < Indi > velocity (archive, generationCounter,MAX_ GEN,
Cl, C2);

* eoStandardFlight < Indi > flight; /* main operators */

* eoUpdatelfBetter < Indi > updater;
* eoUpdateGloballfBetter < Indi > globalUpdater (archive); /* updaters */

* eoGenContinue < Indi > genCont (MAX_GEN);

* eoEasyPSO < Indi > psa (genCont , eval, velocity, flight, updater, globalUpdater);
/* PSO */

* psa (pop); /*runit*
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Execution and visualization

" Advanced runtime control
" Termination condition on the swarm

" Termination condition on the global best

" Advanced statistics and utilities




4 Download, test and enjoy

" http://paradiseo.gforge.inria.fr

" Free download of paradiseo-ix86-1.0-
alpha

" Future work (beta and major releases)
" Parallel and distributed PSO

" Advanced features
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